Geospatial Technology, Data, Spatial Thinking, and National Standards

GEOSTAC

NSF-ATE 0903330 11/11/09

Geospatial "Technology"

Geomatics is the TECHNOLOGY used for visualization, measurement, and analysis of features or phenomena...

(Today)Geospatial technology includes: GPS (global positioning systems) GISci (geographical information science) RS (remote sensing)

http://en.wikipedia.org/wiki/Geospatial_technology

Geospatial Technology

The end products are rapidly merging in terms of availability and function.

Digital Map

Digital Maps [Dynamic Maps]

A computer-readable representation of a geographic area or phenomenon that can be displayed or analyzed by a digital computer. This is in contrast to an analog "paper" map.

May or may not be:

- Scalable
- Able to "add" layers (overlay)
- Multimedia

There is little analysis or data selection available

Virtual Globes

Virtual Globe

- 3D software model of the earth (or other planet)
- Provide interactivity
- Change view angles
- Ability to change scale
- View layers of data
- Measure area, distance
- Add data layers

iii Ede	New Still	da Heb	por en				
/ Search					F.		
Fly To	Find Businesses	Directions	cr				
Fly to e.	g., New York, NY		T.	- 368			
lane co	unity oregon	MA			5	The .	
	Lane County, Orego Lane County, Orego	0 0					日本子の
		×			1		3

Desktop GIS

Desktop GIS Underused in K-12

- Cost of hardware
- Cost of software
- Limitation of time

- Steep learning curve for teachers and students
- Others?

Web-based GIS

Web-based GIS

 Limited desktop GIS maps and tools

- Available over the Internet
- No software needs (Web-browser)
- Less hardware need (computer high-speed internet)
- Limited data (Only what the developer has provided)

Web-based GIS

- Scalable
- Measurement
- Layers overlays
- Boolean Logic Queries select
- Identify
- Find
- Data download
- Spatial Buffer

NSF-ATE 0903330

11/11/09

Spatial Data

- Scale of data
 Global, local
- Type of data
 - Point, line, polygon, raster (grid)

State: population, election results, income averages

County: population, election results, economic information.

Spatial data - information connected to a place.

Countries: population, major religions, number of military bases.

Census blocks, zip codes: age, gender, economic information

Latitude and longitude: city location, point source pollution Street address: number of occupants, price of home

Blue dots represent street addresses where a burglary occurred in 2006.

Spatial Thinking: Direction - Location

Cardinal Directions:

North – South – East - West

Relative and Absolute Location :

Absolute location - The main post office Eugene, Oregon is at 44° 03' 13.90" north latitude and 123° 05' 37.35" west longitude.

Relative location - The main post office is .5 miles due west of the Willamette River and approximately 60 miles south of Oregon's capital city, Salem.

Spatial Thinking: Pattern

The shape and distribution of data.

Shape – geometry: linear, circular, rectangular Distribution – Clustered, dispersed, random, density

Dots indicate burglary locations. The pattern has dense areas and is clustered in places.

Dots indicate car accidents. The pattern is linear*and there are areas of higher density or clusters.

The linear pattern here makes sense because the map is showing accidents along streets.

Spatial Thinking: Correlation

The relationship between two sets of data.

- A positive correlation means that places are similar (Both high or low with respect to a specific trait)
- A negative correlation mean that places are different. (One low and one high with respect to a specific trait)

Spatial Thinking: Scale

The relationship between the image size (map) and the actual earth. The larger the scale (the more you "zoom" in) the larger the object are, but you see less area.

<image>

Spatial Thinking: Query

A way to "ask" spatial or logical questions. Boolean Logic- to select or highlight information All cities with a population of 1 million and are in California (A and B) All cities with a population of 1 million or that are in California (A or B) All cities with a population of 1 million not in California (A not B)

Spatial Thinking: Buffers

Spatial buffers are identified areas that have a specific size or distance around some geographic feature like a river or a city.

One, two, three, and four mile buffers around city location points to identify the radius of pollution spread.

A buffer around an urban creek to identify the location of sensitive riparian habitat.

Geospatial Thinking Across the Curriculum

Embedding geospatial tools and thinking addresses national education standards in:

- Technology
- Math
- Social Science
- Science
- English language (French?)

National Technology Standards – ISTE

Standard 2: Social, ethical, and human issues	 Understand the ethical, cultural, and societal issues related to technology. Develop positive attitudes toward technology uses that support lifelong learning, collaboration, personal pursuits, and productivity.
Standard 3: Technology productivity tools	 Use technology tools to enhance learning, increase productivity, and promote creativity.
Standard 5: Technology research tools	 Use technology tools to process data and report results. Evaluate and select new information resources and technological innovations based on the appropriateness for specific tasks.
Standard 6: Technology problem- solving and decision-	 Use technology resources for solving problems and making informed decisions. Employ technology in the development of strategies for solving problems in the real world.

National Social Studies Standards

Theme I: Culture – Processes	 Compare and analyze societal patterns for preserving and transmitting culture while adapting to environmental or social change. Explain and apply ideas, theories and modes of inquiry from anthropology and sociology in the examination of persistent issues and social problems. Interpret patterns of behavior reflecting values and attitudes that contribute or pose obstacles to cross- cultural understanding. Analyze a current or past problem or issue through an analysis of the cultural patterns of the groups involved and the ways in which these contribute or present obstacles to finding solutions
Theme II: Time, Continuity, and Change	 Read and observe data for analysis and discuss their findings. Construct reasoned arguments. Build a project online or physical that reflects knowledge.

National Science Education Standards

Standard A: Develop abilities necessary to do scientific inquiry and understandings about scientific inquiry	 Use technology and mathematics to improve investigations and communications. Recognize and analyze alternative explanations and models. Communicate and defend a scientific argument.
Standard E: Abilities of technological design and understandings about science and technology	 Identify a problem or design an opportunity.

National Mathematics Standards

Algebra	 Understand the meaning of equivalent forms of expressions, equations, inequalities, and relations. Use mathematical models to represent and understand quantitative relationships. Identify essential quantitative relationships in a situation and determine the class or classes of functions that might model the relationships. Draw reasonable conclusions about a situation being modeled. Represent and analyze mathematical situations and structures using algebraic symbols.
Measurement	 Understand measurable attributes of objects and the units, systems, and processes of measurement. Make decisions about units and scales that are appropriate for problem situations involving measurement. Apply appropriate techniques, tools, and formulas to measurement situations. Analyze precision, accuracy, and approximate error in-measurement situations.

National Mathematics Standards

Data Analysis and Probability	 Formulate questions that can be addressed with data.
	 Understand the meaning of measurement data and categorical data, of univariate and bivariate data, and of the term variable.
	 Compute basic statistics and understand the
	distinction between a statistic and a parameter.
	 Develop and evaluate inferences and predictions that
	are based on data
	 Use simulations to explore the variability of sample
	statistics from a known population and to construct sampling distributions.
	 Understand how sample statistics reflect the values of population parameters and use sampling
	distributions as the basis for informal inference.
	 Understand and apply basic concepts of probability. Understand the concepts of sample space and
NSF-ATE 0903330 11/11/09	probability distribution and construct sample spaces

English Language Standards – NCTE

Standard 4	•Students adjust their use of spoken, written, and visual language to communicate effectively with a variety of audiences and for different purposes.
Standard 8	•Students use a variety of technological and informational resources (e.g., libraries, databases, and computer networks, video) to gather and synthesize information

